Lattice-charge imbalance and redox catalysis over perovskite-type ferrite- and manganite-based mixed oxides as studied by XRD, FTIR, UV-Vis DRS, and XPS

通过 XRD、FTIR、UV-Vis DRS 和 XPS 研究钙钛矿型铁氧体和锰氧化物基混合氧化物的晶格电荷不平衡和氧化还原催化作用

阅读:6
作者:Gamal A H Mekhemer, Hagar A A Mohamed, Ali Bumajdad, Mohamed I Zaki

Abstract

In the present investigation, two sets of pure and substituted ferrite- and manganite-based mixed oxides were prepared within the stoichiometric formula[Formula: see text], where A = Bi or La, A' = Sr, B = Fe or Mn, B' = Co, x = 0 or 0.2, by calcination at 700 °C (for 1 h) of corresponding metal citrate xerogels. Materials thus obtained were examined for bulk and surface characteristics using X-ray diffractometry, ex situ Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and N2 sorptiometry. Their redox catalytic activity was evaluated towards a 2-propanol dehydrogenation reaction in the gas phase by employing in situ Fourier transform infrared spectroscopy. The results obtained could help reveal that (1) the presence of Bi (versus La) and Mn (versus Fe) facilitated the formation of polymeric crystalline phases assuming lattice-charge imbalance (due to excess positive charge), (2) the surface exposure of the excess positive charge was manifested in the generation of Mn sites having various oxidation states ≥ 3+, (3) the consequent development of visible light absorptions at 498-555 nm suggested occurrence of electron double-exchange facilitated by the formation of Mnn+-O2--Mn(n+1)+ Zener-type linkages, and (4) the exposure of such linkages at the surface warrants the establishment of the electron-mobile environment necessitated by the redox catalytic activity. Moreover, the relationship between the alcohol dehydrogenation activity and the magnitude of the lattice-charge imbalance (i.e., the net excess positive charge) of the catalysts was highlighted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。