Deficiency of chemokine receptor CCR1 causes osteopenia due to impaired functions of osteoclasts and osteoblasts

趋化因子受体 CCR1 缺乏会导致破骨细胞和成骨细胞功能受损,从而引起骨质减少

阅读:7
作者:Akiyoshi Hoshino, Tadahiro Iimura, Satoshi Ueha, Sanshiro Hanada, Yutaka Maruoka, Mitsuori Mayahara, Keiko Suzuki, Toshio Imai, Masako Ito, Yoshinobu Manome, Masato Yasuhara, Takaaki Kirino, Akira Yamaguchi, Kouji Matsushima, Kenji Yamamoto

Abstract

Chemokines are characterized by the homing activity of leukocytes to targeted inflammation sites. Recent research indicates that chemokines play more divergent roles in various phases of pathogenesis as well as immune reactions. The chemokine receptor, CCR1, and its ligands are thought to be involved in inflammatory bone destruction, but their physiological roles in the bone metabolism in vivo have not yet been elucidated. In the present study, we investigated the roles of CCR1 in bone metabolism using CCR1-deficient mice. Ccr1(-/-) mice have fewer and thinner trabecular bones and low mineral bone density in cancellous bones. The lack of CCR1 affects the differentiation and function of osteoblasts. Runx2, Atf4, Osteopontin, and Osteonectin were significantly up-regulated in Ccr1(-/-) mice despite sustained expression of Osterix and reduced expression of Osteocalcin, suggesting a lower potential for differentiation into mature osteoblasts. In addition, mineralized nodule formation was markedly disrupted in cultured osteoblastic cells isolated from Ccr1(-/-) mice. Osteoclastogenesis induced from cultured Ccr1(-/-) bone marrow cells yielded fewer and smaller osteoclasts due to the abrogated cell-fusion. Ccr1(-/-) osteoclasts exerted no osteolytic activity concomitant with reduced expressions of Rank and its downstream targets, implying that the defective osteoclastogenesis is involved in the bone phenotype in Ccr1(-/-) mice. The co-culture of wild-type osteoclast precursors with Ccr1(-/-) osteoblasts failed to facilitate osteoclastogenesis. This finding is most likely due to a reduction in Rankl expression. These observations suggest that the axis of CCR1 and its ligands are likely to be involved in cross-talk between osteoclasts and osteoblasts by modulating the RANK-RANKL-mediated interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。