Doxorubicin-loaded PEGylated liposome modified with ANGPT2-specific peptide for integrative glioma-targeted imaging and therapy

ANGPT2特异性肽修饰的载阿霉素聚乙二醇化脂质体用于综合胶质瘤靶向成像和治疗

阅读:5
作者:Hongyan Li, Rong Gan, Jiadi Liu, Duling Xu, Qiyue Zhang, Haidong Tian, Huijun Guo, Haijun Wang, Zhimin Wang, Xianwu Zeng1

Abstract

Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma. The targeted ANGPT2 peptides were designed using the molecular operating environment. Peptide-conjugated PEGlated liposomes containing Dox (peptide-Lipo@Dox) were prepared for radionuclide and drug delivery. Glioma cell functions were determined based on cell cycle and viability, apoptosis, cell invasion and migration, and colony-formation assays. The anti-tumor effect of peptide-Lipo@Dox was validated in intracranial U87-MG cell glioma-bearing mice in vivo. The peptides GSFIHSVPRH (GSF) and HSVPRHEV (HSV) showed specific affinity for ANGPT2 and a better cellular uptake in U87-MG cells. Micro-positron emission tomography (PET)/computed tomography (CT) imaging was used to visualize the orthotopic transplantation of glioma in the brain 1 h after injection of radionuclide 68Ga-labeled peptide-Lipo@Dox. Lipo@Dox with peptide modification demonstrated stable Dox loading, small sizes (<40 nm), and enrichment in the tumor region of the mouse brain. Peptide-Lipo@Dox treatment inhibited the Tie-2/Akt/Foxo-1 pathway, thereby inhibiting cell invasion and migration, cell viability, and colony-forming ability of U87-MG cells. Lipo@Dox peptide modification showed a better suppression of glioma development than Lipo@Dox. Thus, the ANGPT2-specific peptides were successfully designed, and the PEGylated liposome modified with ANGPT2-specific peptide served as part of a potent delivery method for integrative glioma-targeted imaging and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。