Effects of NCO/OH Ratios on Bio-Based Polyurethane Film Properties Made from Acacia mangium Liquefied Wood

NCO/OH 比对马占相思液化木材制备的生物基聚氨酯薄膜性能的影响

阅读:5
作者:Ismawati Palle, Valeritta Lodin, Ag Ahmad Mohd Yunus, Seng Hua Lee, Paridah Md Tahir, Naruhito Hori, Petar Antov, Akio Takemura

Abstract

The compatibility between isocyanate and polyol plays an important role in determining a polyurethane product's performance. This study aims to evaluate the effect of varying the ratios between polymeric methylene diphenyl diisocyanate (pMDI) and Acacia mangium liquefied wood polyol on the polyurethane film properties. A. mangium wood sawdust was liquefied in polyethylene glycol/glycerol co-solvent with H2SO4 as a catalyst at 150 °C for 150 min. The A. mangium liquefied wood was mixed with pMDI with difference NCO/OH ratios to produce film through the casting method. The effects of the NCO/OH ratios on the molecular structure of the PU film were examined. The formation of urethane, which was located at 1730 cm-1, was confirmed via FTIR spectroscopy. The TGA and DMA results indicated that high NCO/OH ratios increased the degradation temperature and glass transition from 275 °C to 286 °C and 50 °C to 84 °C, respectively. The prolonged heat appeared to boost the crosslinking density of the A. mangium polyurethane films, which finally resulted in a low sol fraction. From the 2D-COS analysis, the hydrogen-bonded carbonyl (1710 cm-1) had the most significant intensity changes with the increasing NCO/OH ratios. The occurrence of the peak after 1730 cm-1 revealed that there was substantial formation of urethane hydrogen bonding between the hard (PMDI) and soft (polyol) segments as the NCO/OH ratios increased, which gave higher rigidity to the film.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。