Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway

硫酸肝素存在下淀粉样蛋白形成的动力学分析:更快的展开和途径的改变

阅读:5
作者:Neda Motamedi-Shad, Elodie Monsellier, Silvia Torrassa, Annalisa Relini, Fabrizio Chiti

Abstract

A number of human diseases are associated with the conversion of proteins from their native state into well defined fibrillar aggregates, depositing in the extracellular space and generally termed amyloid fibrils. Heparan sulfate (HS), a glycosaminoglycan normally present in the extracellular matrix, has been found to be universally associated with amyloid deposits and to promote amyloid fibril formation by all studied protein systems. We have studied the impact of HS on the amyloidogenesis of human muscle acylphosphatase, monitoring the process with an array of techniques, such as normal and stopped-flow far-UV circular dichroism, thioflavin T fluorescence, static and dynamic light scattering, and atomic force microscopy. The results show that HS accelerates the conversion of the studied protein from the native state into the amyloidogenic, yet monomeric, partially folded state. They also indicate that HS does not simply accelerate the conversion of the resulting partially folded state into amyloid species but splits the process into two distinct pathways occurring in parallel: a very fast phase in which HS interacts with a fraction of protein molecules, causing their rapid aggregation into ThT-positive and beta-sheet containing oligomers, and a slow phase resulting from the normal aggregation of partially folded molecules that cannot interact with HS. The HS-mediated aggregation pathway is severalfold faster than that observed in the absence of HS. Two aggregation phases are generally observed when proteins aggregate in the presence of HS, underlying the importance of a detailed kinetic analysis to fully understand the effect of this glycosaminoglycan on amyloidogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。