Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin

接受低剂量重组促红细胞生成素治疗的人体全身和肌肉铁代谢的变化

阅读:9
作者:Paul Robach, Stefania Recalcati, Domenico Girelli, Cecilia Gelfi, Niels J Aachmann-Andersen, Jonas J Thomsen, Anne M Norgaard, Alessandra Alberghini, Natascia Campostrini, Annalisa Castagna, Agnese Viganò, Paolo Santambrogio, Tibor Kempf, Kai C Wollert, Stéphane Moutereau, Carsten Lundby, Gaetano Ca

Abstract

The high iron demand associated with enhanced erythropoiesis during high-altitude hypoxia leads to skeletal muscle iron mobilization and decrease in myoglobin protein levels. To investigate the effect of enhanced erythropoiesis on systemic and muscle iron metabolism under nonhypoxic conditions, 8 healthy volunteers were treated with recombinant erythropoietin (rhEpo) for 1 month. As expected, the treatment efficiently increased erythropoiesis and stimulated bone marrow iron use. It was also associated with a prompt and considerable decrease in urinary hepcidin and a slight transient increase in GDF-15. The increased iron use and reduced hepcidin levels suggested increased iron mobilization, but the treatment was associated with increased muscle iron and L ferritin levels. The muscle expression of transferrin receptor and ferroportin was up-regulated by rhEpo administration, whereas no appreciable change in myoglobin levels was observed, which suggests unaltered muscle oxygen homeostasis. In conclusion, under rhEpo stimulation, the changes in the expression of muscle iron proteins indicate the occurrence of skeletal muscle iron accumulation despite the remarkable hepcidin suppression that may be mediated by several factors, such as rhEpo or decreased transferrin saturation or both.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。