Klotho Regulates Epithelial-to-Mesenchymal Transition In Vitro via Wnt/β-Catenin Pathway and Attenuates Chronic Allograft Dysfunction in a Rat Renal Transplant Model

Klotho 通过 Wnt/β-Catenin 通路体外调节上皮-间质转化并减轻大鼠肾移植模型中的慢性移植功能障碍

阅读:7
作者:Xiaojun Li, Pei Lu, Xue-Feng Shao, Ting Jiang, Feng Liu, Gang Li

Abstract

BACKGROUND Klotho deficiency has been implicated in various kidney diseases and has been associated with renal fibrosis. However, the role of Klotho in renal allograft fibrosis still remains undetermined. MATERIAL AND METHODS A 24-week-old rat renal transplant model with chronic allograft dysfunction (CAD) was carried out by orthotopic kidney transplantation using F344 donor rats to Lewis recipient rats. Successful establishment of the model was verified by HE and Masson staining and renal allograft function assessment. HK-2 cells were cultured and treated with TGF-ß1 and/or siRNA-Klotho at various time points. Total proteins and RNA were extracted from the cultured cells and kidney tissues. Western blot assay and quantitative RT-PCR were used to analyze the expression of Klotho, fibronectin, and ß-catenin pathways. RESULTS We successfully established and identified a 24-week-old rat renal transplant model with CAD. Loss of Klotho was identified to be associated with epithelial-to-mesenchymal transition (EMT), renal allograft fibrosis, and CAD. In HK-2 cells, a significant decrease of Klotho protein was observed in the renal fibrosis induced by TGF-ß1 in a time-dependent manner. Moreover, intervention of siRNA-Klotho remarkably promoted the progression of renal fibrosis and activation of the Wnt/ß-catenin signaling pathway. CONCLUSIONS Our results show that Klotho has a significant protective role against EMT, renal allograft fibrosis, and CAD following kidney transplantation, which is mediated by inhibition of the Wnt/ß-catenin signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。