Characterizing Preferential Adsorption of Phosphate on Binary Sorbents of Goethite and Maghaemite using in situ ATR-FTIR and 2D Correlation Spectroscopy

使用原位 ATR-FTIR 和二维相关光谱法表征磷酸盐在针铁矿和磁赤铁矿二元吸附剂上的优先吸附

阅读:5
作者:Junho Han, Hee-Myong Ro

Abstract

Recent developments in analytics using infrared spectroscopy have enabled us to identify the adsorption mechanism at interfaces, but such methods are applicable only for simple systems. In this study, the preferential adsorption of phosphate on binary goethite and maghaemite was investigated. As a result, monodentate and bidentate complexes were the major complexes on goethite and maghaemite, respectively. A shrinking effect in goethite and a swelling effect in maghaemite were identified, and environmental perturbations caused a significant decrease in the integrated absorbance of phosphate complexes on maghaemite, while no effect was observed on goethite, which implies that different adsorption mechanisms were involved. Based on the results, a bridging complex was proposed, and the swelling effect is explained by the negatively charged maghaemite surface resulting from the bidentate complex. The isolation of phosphate by the shrinking effect explains the low phosphate bioavailability in the soil environment, while the colloidal properties of the bidentate complex on maghaemite are the reason for colloidal mobilization. To the best of our knowledge, this study not only addresses the shrinking and swelling properties of iron (hydr)oxide nanoparticles but also demonstrates preferential adsorption on binary sorbents using in situ ATR-FTIR for the first time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。