Differential incorporation of one-carbon substrates among microbial populations identified by stable isotope probing from the estuary to South China Sea

通过稳定同位素探测确定南海河口微生物种群中一碳底物的差异结合

阅读:11
作者:Wenchao Deng, Lulu Peng, Nianzhi Jiao, Yao Zhang

Abstract

Methanol (MOH) and monomethylamine (MMA) are two typical one-carbon (C1) compounds found in natural environments. They play an important role in marine and atmospheric chemistry, cloud formation, and global climate. The main biological sink of MOH and MMA is rapid consumption by marine microbes. Here, field-based time-series incubations with supplemental 13C-labelled MOH and MMA and isotope ratio analyses were performed. A substantial difference in the MOH and MMA incorporation rates and bacterial taxa were observed between the South China Sea (SCS) and the Pearl River estuary. C1 substrates were assimilated more quickly in the estuary than the SCS shelf where MOH and MMA had similar bio-availability. However, microbial responses to MMA may be faster than to MOH in the coastal and basin surface water of the SCS despite similar active bacterial populations. Three ecological types of bacteria, in terms of response to supplemented MOH and MMA, were identified: rapid incorporation (I, dominant C1-incorporating group), slow incorporation (II, minor C1-incorporating group), and no incorporation (III, C1-non-incorporating group). Members of the families Methylophilaceae (β-Proteobacteria) and Piscirickettsiaceae (γ-Proteobacteria) belonged to type I and actively incorporated substrates in the estuary and SCS, respectively. Diverse MOH and MMA-incorporating type II bacteria were identified by stable isotope probing in the SCS, and could play a more important role in the transformation of C1 compounds in marine environments than hitherto assumed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。