Rapid diversification of wild social groups driven by toxin-immunity loci on mobile genetic elements

移动遗传元件上的毒素免疫位点驱动野生社会群体的快速多样化

阅读:9
作者:Christopher N Vassallo #, Vera Troselj #, Michael L Weltzer, Daniel Wall

Abstract

Many species form distinct social groups that provide fitness advantages to individuals. However, the evolutionary processes that generate new social groups are not well understood. Here we examined recently diverged natural isolates of the model social bacterium, Myxococcus xanthus, to probe the genetic mechanisms and evolutionary processes of kin discrimination that occurred naturally in soil. We show that social incompatibilities were formed from horizontal gene transfer of effectors belonging to three distinct polymorphic toxin systems; outer membrane exchange, type VI secretion and rearrangement hotspot systems. Strikingly, the unique toxin effectors and their respective immunity genes that are responsible for social incompatibilities reside on mobile genetic elements, which make up nearly all of the genotypic variation between isolates within clades. By disrupting these three toxin systems, we engineered social harmony between strains that were originally incompatible. In addition, a horizontal allele swap of a single kin recognition receptor changed social interactions and competition outcomes. Our results provide a case study for how horizontal gene transfer led to social diversification in a natural context. Finally, we show how genomic information of kin discriminatory loci can be used to predict social interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。