Mammalian Target of Rapamycin Signaling Enhances Ovalbumin-Induced Neutrophilic Airway Inflammation by Promoting Th17 Cell Polarization in Murine Noneosinophilic Asthma Model

哺乳动物雷帕霉素信号靶标通过促进小鼠非嗜酸性哮喘模型中的 Th17 细胞极化增强卵清蛋白诱导的中性粒细胞气道炎症

阅读:6
作者:Jinhong Wu, Wenwei Zhong, Hao Zhang, Yong Yin

Background

T helper 17 (Th17) is regarded as key immune cell in the pathogenesis of noneosinophilic asthma (NEA) due to the recruitment of neutrophils into the airways. The mammalian target of rapamycin (mTOR) is an important signaling molecule that plays a critical role in immune regulation. This study focused on mTOR signaling pathway in the regulation of Th17-mediated neutrophilic airway inflammation.

Conclusion

These results suggested that mTOR promoted Th17 cell polarization and enhanced OVA-induced neutrophilic airway inflammation in experimental NEA.

Methods

Ovalbumin (OVA) T cell receptor transgenic DO11.10 mice (DO11.10 mice) were used to establish NEA model, and few mice received specific mTORC1 inhibitor rapamycin (RAPA) before intranasal administration of OVA. The severity of airway inflammation was determined by differential cell counts in bronchoalveolar lavage (BAL) fluids and histopathologic lung analysis. The levels of various cytokines in BAL fluids and lung tissues were measured. To determine the role of mTORC1 signaling in Th17 differentiation, naive T cells from wild-type (WT) and TSC1 knockout (KO) mice were cultured in Th17 skewing condition with or without RAPA in vitro and the production of IL-17A was compared.

Results

Treatment with RAPA markedly attenuated OVA-induced neutrophilic airway inflammation in DO11.10 mice. Also the production of IL-17A was inhibited without affecting the production of interferon-γ (IFN-γ) and IL-4 in lungs. Furthermore, RAPA suppressed differentiation of Th17 cells in vitro, whereas enhanced activity of mTORC1 promoted Th17 cell differentiation and increased the expression of Th17-related transcription factors RORγt and RORα.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。