Improvement of Structural, Rheological, and physicochemical properties of type I collagen by calcium lactate combined with ultrasound

乳酸钙联合超声波改善I型胶原的结构、流变性和物理化学性质

阅读:5
作者:Miao Zhang, Tingxuan Gao, Yu Han, Dejiang Xue, Shuai Jiang, Qian Li, Chunbao Li

Abstract

Type I collagen has a relatively stable quality while quite resistant to digestion because of the complex triple helix structure. This study was conducted to explore the acoustic conditions of ultrasound (UD)-assisted calcium lactate processing of collagen and control the processing process through its sono-physico-chemical effects. The findings demonstrated that UD might lower the average particle size of collagen and increase its zeta potential. In contrast, the rise in calcium lactate concentration could dramatically limit the impact of UD processing. This may be because of its low acoustic cavitation effect, as demonstrated by the phthalic acid method (the fluorescence value decreased from 81245.67 to 18243.67). Poor changes in tertiary and secondary structures confirmed the detrimental effect of calcium lactate concentration on UD-assisted processing. Although UD-assisted calcium lactate processing can significantly alter the structure of collagen, the integrity of the collagen is basically preserved. Furthermore, the addition of UD and a trace amount of calcium lactate (0.1%) increased the roughness of the fiber structure. At this relatively low calcium lactate concentration, ultrasound improved the gastric digestibility of collagen by nearly 20%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。