Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils

超声波预处理对大豆分离蛋白纳米纤维功能特性、抗氧化活性及消化率的影响

阅读:5
作者:Anna Hu, Liang Li

Abstract

Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。