Proteomic Investigation of the Antibacterial Mechanism of Cefiderocol against Escherichia coli

蛋白质组学研究头孢地尔对大肠杆菌的抗菌机制

阅读:6
作者:Gao-Fei Du #, Yu Dong #, Xiaolu Fan #, Ankang Yin, Yao-Jin Le, Xiao-Yan Yang

Abstract

This study aimed to investigate the antibacterial mechanism of cefiderocol (CFDC) using data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays. Numerous differentially expressed proteins related to the production of NADH, reduced cofactor flavin adenine dinucleotide (FADH2), NADPH and reactive oxygen species (ROS), iron-sulfur cluster binding, and iron ion homeostasis were found to be upregulated by CFDC. Furthermore, parallel reaction monitoring analysis validated these results. Meanwhile, we confirmed that the levels of NADH, ROS, H2O2, and iron ions were induced by CFDC, and the sensitivity of Escherichia coli to CFDC was inhibited by the antioxidant vitamin C, N-acetyl-l-cysteine, and deferoxamine. Moreover, deferoxamine also suppressed the H2O2 stress induced by CFDC. In addition, knockout of the NADH-quinone oxidoreductase genes (nuoA, nuoC, nuoE, nuoF, nuoG, nuoJ, nuoL, nuoM) in the respiratory chain attenuated the sensitivity of E. coli to CFDC far beyond the effects of cefepime and ceftazidime; in particular, the E. coli BW25113 ΔnuoJ strain produced 60-fold increases in MIC to CFDC compared to that of the wild-type E. coli BW25113 strain. The present study revealed that CFDC exerts its antibacterial effects by inducing ROS stress by elevating the levels of NADH and iron ions in E. coli. IMPORTANCE CFDC was the first FDA-approved siderophore cephalosporin antibiotic in 2019 and is known for its Trojan horse tactics and broad antimicrobial activity against Gram-negative bacteria. However, its antibacterial mechanism is not fully understood, and whether it has an impact on in vivo iron ion homeostasis remains unknown. To comprehensively reveal the antibacterial mechanisms of CFDC, data-independent acquisition quantitative proteomics combined with cellular and molecular biological assays were performed in this study. The findings will further facilitate our understanding of the antibacterial mechanism of CFDC and may provide a theoretical foundation for controlling CFDC resistance in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。