Label-Free Electrochemical Immunosensor Based on Conjugated Polymer Film Coated Disposable Electrode for Ultrasensitive Determination of Resistin Potential Obesity Biomarker

基于共轭聚合物薄膜涂层一次性电极的无标记电化学免疫传感器,用于超灵敏测定抵抗素潜在肥胖生物标志物

阅读:7
作者:Elif Burcu Aydın, Muhammet Aydın, Mustafa Kemal Sezgintürk

Abstract

A new label-free immunosensor was designed for sensitive detection of resistin obesity biomarker in human biological fluids. To construct a sensing interface, the monomer of double epoxy groups-substituted thiophene (TdiEpx) was synthesized for the fabrication of the biosensing system. A disposable indium tin oxide sheet was first modified by electrochemical polymerization of the TdiEpx monomer, and this robust and novel surface was characterized using different spectroscopic and electrochemical analyses. The double epoxy ends were linked to the amino ends of anti-resistin, and they served as binding points for the covalent binding of biomolecules. The double epoxy ends present in each TdiEpx monomer ensured an extensive surface area, which improved the quantity of attached anti-resistin. The determination of resistin antigen was based on the specific coupling of resistin with anti-resistin, and this interaction hindered the electron transfer reaction. The immunosensor introduced a wide linear range of 0.0125-15 pg/mL, a low detection limit of 4.17 fg/mL, and an excellent sensitivity of 1.38 kohm pg mL-1 cm2. In this study, a sandwich enzyme-linked immunosorbent assay spectrophotometric method was utilized as a reference technique for the quantitative analysis of resistin in human serum and saliva samples. Both measurements in clinical samples displayed correlations and high-correlation coefficients. In addition, this immunosensor had good storage stability, acceptable repeatability and reproducibility, high specificity, and good accuracy. The proposed immunosensor provided a simple and versatile impedimetric immunosensing platform and a promisingly sensitive way for clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。