AadA36, a novel chromosomal aminoglycoside nucleotidyltransferase from a clinical isolate of Providencia stuartii

AadA36,一种来自斯氏普罗维登斯菌临床分离株的新型染色体氨基糖苷核苷酸转移酶

阅读:5
作者:Mengdi Gao, Chunlin Feng, Yongan Ji, Yaokai Shi, Weina Shi, Lei Zhang, Shuang Liu, Anqi Li, Xueya Zhang, Qiaoling Li, Junwan Lu, Qiyu Bao, Hailin Zhang

Abstract

In this study, we characterized a novel chromosome-encoded aminoglycoside nucleotidyltransferase (ANT), AadA36, from the Providencia stuartii strain P14 isolated from the sputum specimen of a burn patient at a hospital in Wenzhou, China. Among the functionally characterized ANTs, AadA36 shared the highest amino acid sequence identity of 51.91% with AadA14. The whole genome of P. stuartii P14 consisted of one chromosome and two plasmids (designated pP14-166 and pP14-114). A total of 19 genes with ≥80% similarity with functionally characterized antimicrobial resistance genes (ARGs) were identified in the whole genome, including aminoglycosides [aac(2')-Ia, aph(6)-Id, aph(3″)-Ib, aac(6')-Ib, ant(3″)-IIa, aph(3')-Ia], β-lactams (bla CMY-2 and bla OXA-10) and so on. Antimicrobial susceptibility testing showed that the aadA36 gene conferred specific resistance to spectinomycin and streptomycin, and the minimum inhibitory concentration (MIC) of these antimicrobials increased 128- and 64-fold compared with the control strain. The kinetic parameters of AadA36 were consistent with the MIC data of spectinomycin and streptomycin, with kcat /Km ratios of (1.07 ± 2.23) × 104 M-1 s-1 and (8.96 ± 1.01) × 103 M-1 s-1, respectively. The identification of a novel aminoglycoside resistance gene will help us further understand the complexity of the resistance mechanisms and provide deep insights into the dissemination of resistance genes in the microbial population.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。