Integrated Bioinformatics Algorithms and Experimental Validation to Explore Robust Biomarkers and Landscape of Immune Cell Infiltration in Dilated Cardiomyopathy

综合生物信息学算法和实验验证,探索扩张型心肌病的稳健生物标志物和免疫细胞浸润概况

阅读:7
作者:Qingquan Zhang, Mengkang Fan, Xueyan Cao, Haihua Geng, Yamin Su, Chunyu Wu, Haiyan Pan, Min Pan

Background

The etiology of dilated cardiomyopathy (DCM) is unclear. Bioinformatics algorithms may help to explore the underlying mechanisms. Therefore, we aimed to screen diagnostic biomarkers and identify the landscape of immune infiltration in DCM.

Conclusion

ASPN, CD163, IL10, and LUM may have a potential predictive ability for DCM, and especially CD163 showed the most robust efficacy. Furthermore, activated NK cells and eosinophils may relate to the occurrence of DCM.

Methods

First, the CIBERSORT algorithm was used to excavate the proportion of immune-infiltration cells in DCM and normal myocardial tissues. Meanwhile, the Pearson analysis and principal component analysis (PCA) were used to identify immune heterogeneity in different tissues. The Wilcoxon test, LASSO regression, and machine learning method were conducted to identify the hub immune cells. In addition, the differentially expressed genes (DEGs) were screened by the limma package, and DEGs were analyzed for functional enrichment. In the protein-protein interaction (PPI) network, multiple algorithms were used to calculate the score of each DEG for screening the hub genes. Subsequently, external datasets were used to further validate the expression of hub genes, and the receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficacy. Finally, we examined the expression of hub biomarkers in animal models.

Results

A total of 108 DEGs were screened, and these genes may be related to biological processes such as cytolysis, positive regulation of cytokine secretion, etc. Two types of hub immune cells [activated natural killer (NK) cells and eosinophils] and four hub genes (ASPN, CD163, IL10, and LUM) were identified in DCM myocardial tissues. CD163 was verified to have the capability to diagnose DCM with the most excellent specificity and sensitivity. It is worth mentioning that the combined CD163 and eosinophils may have better diagnostic efficacy. Moreover, the correlation analysis showed CD163 was negatively correlated with activated NK cells. Finally, the results of the mice model also indicated that CD163 might be involved in the occurrence of DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。