The Synthesis of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase (GNE), α-dystroglycan, and β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6) By Skeletal Muscle Cell As a Response To Infection with Trichinella Spiralis

骨骼肌细胞对旋毛虫感染的反应是合成 UDP-N-乙酰葡萄糖胺 2-表异构酶/N-乙酰甘露糖胺激酶 (GNE)、α-肌营养不良聚糖和 β-半乳糖苷 α-2,3-唾液酸转移酶 6 (ST3Gal6)

阅读:15
作者:R Milcheva, K Todorova, A Georgieva, S Petkova

Abstract

The Nurse cell of the parasitic nematode Trichinella spiralis is a unique structure established after genetic, morphological and functional modification of a small portion of invaded skeletal muscle fiber. Even if the newly developed cytoplasm of the Nurse cell is no longer contractile, this structure remains well integrated within the surrounding healthy tissue. Our previous reports suggested that this process is accompanied by an increased local biosynthesis of sialylated glycoproteins. In this work we examined the expressions of three proteins, functionally associated with the process of sialylation. The enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key initiator of the sialic acid biosynthetic pathway. The α-dystroglycan was the only identified sialylated glycoprotein in skeletal muscles by now, bearing sialyl-α-2,3-Gal-β-1,4-Gl-cNAc-β-1,2-Man-α-1-O-Ser/Thr glycan. The third protein of interest for this study was the enzyme β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6), which transfers sialic acid preferably onto Gal-β-1,4-GlcNAc as an acceptor, and thus it was considered as a suitable candidate for the sialylation of the α-dystroglycan. The expressions of the three proteins were analyzed by real time-PCR and immunohistochemistry on modified methacarn fixed paraffin tissue sections of mouse skeletal muscle samples collected at days 0, 14 and 35 post infection. According to our findings, the up-regulation of GNE was a characteristic of the early and the late stage of the Nurse cell development. Additional features of this process were the elevated expressions of α-dystroglycan and the enzyme ST3Gal6. We provided strong evidence that an increased local synthesis of sialic acids is a trait of the Nurse cell of T. spiralis, and at least in part due to an overexpression of α-dystroglycan. In addition, circumstantially we suggest that the enzyme ST3Gal6 is engaged in the process of sialylation of the major oligosaccharide component of α-dystroglycan.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。