K-Ras and p53 mouse model with molecular characteristics of human rhabdomyosarcoma and translational applications

具有人类横纹肌肉瘤分子特征的 K-Ras 和 p53 小鼠模型及其转化应用

阅读:5
作者:Kengo Nakahata, Brian W Simons, Enrico Pozzo, Ryan Shuck, Lyazat Kurenbekova, Zachary Prudowsky, Kshiti Dholakia, Cristian Coarfa, Tajhal D Patel, Lawrence A Donehower, Jason T Yustein

Abstract

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with overall long-term survival rates of ∼65-70%. Thus, additional molecular insights and representative models are critical for identifying and evaluating new treatment modalities. Using MyoD-Cre-mediated introduction of mutant K-RasG12D and perturbations in p53, we developed a novel genetically engineered mouse model (GEMM) for RMS. The anatomic sites of primary RMS development recapitulated human disease, including tumors in the head, neck, extremities and abdomen. We confirmed RMS histology and diagnosis through Hematoxylin and Eosin staining, and positive immunohistochemical staining for desmin, myogenin, and phosphotungstic acid-Hematoxylin. Cell lines from GEMM tumors were established with the ability to engraft in immunocompetent mice with comparable histological and staining features as the primary tumors. Tail vein injection of cell lines had high metastatic potential to the lungs. Transcriptomic analyses of p53R172H/K-RasG12D GEMM-derived tumors showed evidence of high molecular homology with human RMS. Finally, pre-clinical use of these murine RMS lines showed similar therapeutic responsiveness to chemotherapy and targeted therapies as human RMS cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。