Heat-treated virus inactivation rate depends strongly on treatment procedure: illustration with SARS-CoV-2

热处理的病毒灭活率在很大程度上取决于处理程序:以 SARS-CoV-2 为例

阅读:9
作者:Amandine Gamble, Robert J Fischer, Dylan H Morris, Kwe Claude Yinda, Vincent J Munster, James O Lloyd-Smith

Abstract

Decontamination helps limit environmental transmission of infectious agents. It is required for the safe re-use of contaminated medical, laboratory and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval: [0.09, 1.77]) in closed vials in a heat block to 37.00 min ([12.65, 869.82]) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature temperature-dependent coronavirus stability and found that specimen containers, and whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。