Postsynaptic current bursts instruct action potential firing at a graded synapse

突触后电流爆发指示分级突触处的动作电位发射

阅读:9
作者:Ping Liu, Bojun Chen, Zhao-Wen Wang

Abstract

Nematode neurons generally produce graded potentials instead of action potentials. It is unclear how the graded potentials control postsynaptic cells under physiological conditions. Here we show that postsynaptic currents frequently occur in bursts at the neuromuscular junction of Caenorhabditis elegans. Cholinergic bursts concur with facilitated action potential firing, elevated cytosolic [Ca(2+)] and contraction of the muscle whereas GABAergic bursts suppress action potential firing. The bursts, distinct from artificially evoked responses, are characterized by a persistent current (the primary component of burst-associated charge transfer) and increased frequency and mean amplitude of postsynaptic current events. The persistent current of cholinergic postsynaptic current bursts is mostly mediated by levamisole-sensitive acetylcholine receptors, which correlates well with locomotory phenotypes of receptor mutants. Eliminating command interneurons abolishes the bursts whereas mutating SLO-1 K(+) channel, a potent presynaptic inhibitor of exocytosis, greatly increases the mean burst duration. These observations suggest that motoneurons control muscle by producing postsynaptic current bursts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。