Multifunctional layered microneedle patches enable transdermal angiogenesis and immunomodulation for scarless healing of thermal burn injuries

多功能分层微针贴片可实现透皮血管生成和免疫调节,从而实现热烧伤的无疤痕愈合

阅读:6
作者:Hang Chen, Lu Tan, Liqi Li, Yan Zheng, Menghuan Li, Shuohan He, Zhong Luo, Kaiyong Cai, Yan Hu

Abstract

Thermal burn injuries induce substantial alterations in the immune compositions and anatomical structures in the skin, which are characterized by strong inflammatory responses and thick eschar formation on the wound surface. These traits challenge current treatment paradigms due to insufficient drug penetration into affected tissues and the unsatisfactory wound regeneration. Herein, we report a layered microneedle (MN) patch for addressing these challenges in burn injury healing. The MN patch features a core/shell structure with methacrylated gelatin (GelMA) encapsulated with human umbilical vein endothelial cell (HUVECs)-derived hypoxia-induced exosomes (EXO-H) as the bottom layer and sodium alginate (SA) containing naringin (Nar)-loaded CaCO3 nanoparticles (CaCO3@Nar) as the top layer. Upon administration onto thermal burn injury site, the MN patches enable transdermal drug delivery by perforating the eschar. The spontaneous degradation of CaCO3@Nar in the interstitial fluid triggers sustained Nar release to alleviate local inflammation and scavenge excessive reactive oxygen species (ROS). Meanwhile, EXO-H significantly promote the migration and proliferation of HUVECs and enhance their angiogenesis capacity to support scarless wound tissue regeneration. The MN patch in this work successfully promoted scarless healing of skin burn injuries on rat models, providing an approach for thermal burn treatment in the clinics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。