Comprehensive analysis of ferroptosis-related genes reveals potential therapeutic targets in osteoporosis patients: a computational analysis and in vitro experiments

铁死亡相关基因的综合分析揭示骨质疏松症患者的潜在治疗靶点:计算分析和体外实验

阅读:8
作者:Sihui Chen #, Yi Jiang #, Guoqin Xie, Peng Wu, Jinyu Zhu

Background

Ferroptosis-related genes have been reported to play important roles in many diseases, but their molecular mechanisms in osteoporosis have not been elucidated.

Conclusion

The study provides a theoretical basis for the treatment of osteoporosis.

Methods

Based on two independent GEO datasets (GSE35956 and GSE35958), and GSE35959 as the validation dataset, we comprehensively elucidated the pathological mechanism of ferroptosis-related genes in osteoporosis by GO analyses, KEGG analyses and a PPI network. Then, We used Western Blot (WB) and Quantitative real-time polymerase chain reaction (qPCR) to verify the expression level of KMT2D, a ferroptosis-related hub gene, in clinical samples. Subsequently, we predicted the upstream miRNA of KMT2D gene and analyzed the mechanism of KMT2D in osteoporosis, the potential prognostic value and its immune invasion of KMT2D in pan-cancer.

Results

This study identified KMT2D and MYCN, TP63, RELA, SOX2, and CDKN1A as key ferroptosis-related genes in osteoporotic cell aging. The independent dataset validated that the expression level of KMT2D was significantly upregulated in osteoporosis samples. The experimental verification results of qPCR and WB indicate that KMT2D is highly expressed in patients with osteoporosis. Further analysis revealed that the hsa-miR-204-5p-KMT2D axis may play an important role in the aging of osteoporotic cells. The analysis of KMT2D reveals that KMT2D may mainly play a role in the aging of osteoporotic cells through epigenetics and the value in pan-cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。