Entropic analysis of cilia-modulated slip flow of trimetallic nanofluid through electroosmotic corrugated pump in the presence of inclined magnetic field

倾斜磁场下三金属纳米流体通过电渗波纹泵的纤毛调节滑移流的熵分析

阅读:5
作者:Sufian Munawar, Najma Saleem, Farkhanda Afzal, Arif Mehmood, Malik Khurram Shahzad Awan, Poom Kumam

Abstract

An incredible eradication of thermal indulgence is required to enhance the flow and heat transfer enhancement in micro/nanofluidic devices. In addition, the rapid transport and instantaneous mixing of colloidal suspensions of metallic particles at nanoscale are exceptionally crucial at ascendency of inertial and surface forces. To address these challenges, the present work is intended to investigate the role of trimetallic nanofluid comprising of three kinds of nano-sized granules (titanium oxide, Silica and Aluminium dioxide) with pure blood through a heated micropump in the presence of inclined magnetic field and axially implemented electric field. To ensure rapid mixing in unidirectional flow, the pump internal surface is lined-up with mimetic motile cilia with slip boundary. The embedded cilia whip in pattern due to dynein molecular motion controlled by time and produce a set of metachronal waves along the pump wall. The shooting technique is executed to compute the numerical solution. In a comparative glance it is revealed that the trimetallic nanofluid exhibits 10% higher heat transfer efficiency as compared to bi-hybrid and mono nanofluids. Moreover, the involvement of electroosmosis results in almost 17% decrease in the heat transfer rate if it values jumps from 1 to 5. The fluid temperature in case of trimetallic nanofluid is higher and thus keeps the heat transfer entropy and the total entropy lower. Furthermore, involvement of thermal radiated and momentum slip significantly contribute in reducing heat losses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。