Allostery between two binding sites in the ion channel subunit TRIP8b confers binding specificity to HCN channels

离子通道亚基 TRIP8b 中两个结合位点之间的变构赋予 HCN 通道结合特异性

阅读:10
作者:Kyle A Lyman, Ye Han, Robert J Heuermann, Xiangying Cheng, Jonathan E Kurz, Reagan E Lyman, Paul P Van Veldhoven, Dane M Chetkovich

Abstract

Tetratricopeptide repeat (TPR) domains are ubiquitous structural motifs that mediate protein-protein interactions. For example, the TPR domains in the peroxisomal import receptor PEX5 enable binding to a range of type 1 peroxisomal targeting signal motifs. A homolog of PEX5, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), binds to and functions as an auxiliary subunit of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Given the similarity between TRIP8b and PEX5, this difference in function raises the question of what mechanism accounts for their binding specificity. In this report, we found that the cyclic nucleotide-binding domain and the C terminus of the HCN channel are critical for conferring specificity to TRIP8b binding. We show that TRIP8b binds the HCN cyclic nucleotide-binding domain through a 37-residue domain and the HCN C terminus through the TPR domains. Using a combination of fluorescence polarization- and co-immunoprecipitation-based assays, we establish that binding at either site increases affinity at the other. Thus, allosteric coupling of the TRIP8b TPR domains both promotes binding to HCN channels and limits binding to type 1 peroxisomal targeting signal substrates. These results raise the possibility that other TPR domains may be similarly influenced by allosteric mechanisms as a general feature of protein-protein interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。