Establishing stable and highly osteogenic hiPSC-derived MSCs for 3D-printed bone graft through microenvironment modulation by CHIR99021-treated osteocytes

通过 CHIR99021 处理的骨细胞微环境调节,建立稳定且高度成骨的 hiPSC 衍生 MSC,用于 3D 打印骨移植

阅读:5
作者:Qiuling Guo, Jingjing Chen, Qiqi Bu, Jinling Zhang, Minjie Ruan, Xiaoyu Chen, Mingming Zhao, Xiaolin Tu, Chengzhu Zhao

Significance

Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.

Statement of significance

Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。