Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis

HS-SPME-GC/MS结合代谢组学分析鉴定超声辅助康普茶发酵过程中的挥发性化合物和代谢途径

阅读:5
作者:Zhen Wang, Waqas Ahmad, Afang Zhu, Wenhui Geng, Wencui Kang, Qin Ouyang, Quansheng Chen

Abstract

The current work combines headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) with multivariate analysis fusion metabonomics for examining metabolite profile changes. The correlation with metabolic pathways during the fermentation of kombucha tea were comprehensively explored. For optimizing the fermentation process, ultrasound-assisted factors were explored. A total of 132 metabolites released by fermented kombucha were detected by HS-SPME-GC/MS. We employed the principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to present the relationship between aroma components and fermentation time, of which the first two principal components respectively accounted for 60.3% and 6.5% of the total variance. Multivariate statistical analysis showed that during the fermentation of kombucha tea, there were significant differences in the phenotypes of metabolites in the samples, and 25 characteristic metabolites were selected as biomarkers. Leaf alcohol was first proposed as the characteristic volatile in the fermentation process of kombucha. Furthermore, we addressed the generation pathways of characteristic volatiles, their formation mechanisms, and the transformational correlation among them. Our findings provide a roadmap for future kombucha fermentation processing to enhance kombucha flavor and aroma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。