SOX9 protein induces a chondrogenic phenotype of mesangial cells and contributes to advanced diabetic nephropathy

SOX9 蛋白诱导系膜细胞的软骨发生表型并导致晚期糖尿病肾病

阅读:9
作者:Seiji Kishi, Hideharu Abe, Haruhiko Akiyama, Tatsuya Tominaga, Taichi Murakami, Akira Mima, Kojiro Nagai, Fumi Kishi, Motokazu Matsuura, Takeshi Matsubara, Noriyuki Iehara, Otoya Ueda, Naoshi Fukushima, Kou-ichi Jishage, Toshio Doi

Abstract

Diabetic nephropathy (DN) is the most important chronic kidney disease. We previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix in DN. Phenotypic change in mesangial cells (MCs) is a key pathologic event in the progression of DN. The aim of this study is to investigate a novel mechanism underlying chondrogenic phenotypic change in MCs that results in the development of DN. MCs showed chondrogenic potential in a micromass culture, and BMP4 induced the expression of chondrocyte markers (SRY-related HMG Box 9 (SOX9) and type II collagen (COL2)). Advanced glycation end products induced the expression of chondrocyte marker proteins downstream from the BMP4-Smad1 signaling pathway in MCs. In addition, hypoxia also induced the expression of BMP4, hypoxia-inducible factor-1α (HIF-1α), and chondrocyte markers. Overexpression of SOX9 caused ectopic expression of proteoglycans and COL2 in MCs. Furthermore, forced expression of Smad1 induced chondrocyte markers as well. Dorsomorphin inhibited these inductions. Glomerular expressions of HIF-1α, BMP4, and chondrocyte markers were observed in diabetic nephropathy mice. These positive stainings were observed in mesangial sclerotic lesions. SOX9 was partially colocalized with HIF-1α and BMP4 in diabetic glomeruli. BMP4 knock-in transgenic mice showed not only similar pathological lesions to DN, but also the induction of chondrocyte markers in the sclerotic lesions. Here we demonstrate that HIF-1α and BMP4 induce SOX9 expression and subsequent chondrogenic phenotype change in DN. The results suggested that the transdifferentiation of MCs into chondrocyte-like cells in chronic hypoxic stress may result in irreversible structural change in DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。