Nano-scaffold containing functional motif of stromal cell-derived factor 1 enhances neural stem cell behavior and synaptogenesis in traumatic brain injury

含有基质细胞衍生因子 1 功能基序的纳米支架可增强创伤性脑损伤中的神经干细胞行为和突触形成

阅读:13
作者:Mohammad Amin Bayat Tork #, Mohsen Saberifar #, Hamed Joneidi Yekta #, Mehrdad Hajinejad, Hassan Hosseini Ravandi, Ali Gorji, Sajad Sahab Negah2

Abstract

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide, presenting a significant challenge due to the lack of effective therapies. Neural stem cells (NSCs) have shown promising potential in preclinical studies as a therapy for TBI. However, their application is limited by challenges related to poor survival and integration within the injured brain. This study investigated the effect of a novel nano-scaffold containing stromal cell-derived factor 1 (SDF-1) on NSC behavior and synaptogenesis after TBI. Using an innovative design, we successfully fabricated a nano-scaffold with Young's modulus of approximately 3.21 kPa, which aligns closely with the mechanical properties exhibited by neural tissue. This achievement marks the first time such a scaffold has been created and has promising implications for its potential use in neural tissue engineering applications. Our findings demonstrate that the nano-scaffold enhances NSC proliferation, migration, and differentiation capacity in vitro. Moreover, when transplanted into the injured brain, the nano-scaffold promotes the survival and integration of NSCs, leading to increased synaptogenesis and functional recovery. These findings suggest that using the novel nano-scaffold containing SDF-1 could provide a promising approach to treating TBI by improving NSC behavior and promoting synaptogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。