Active Ran regulates anillin function during cytokinesis

活性 Ran 在细胞分裂过程中调节苯胺功能

阅读:7
作者:Daniel Beaudet, Tara Akhshi, Julia Phillipp, Christopher Law, Alisa Piekny

Abstract

Cytokinesis cleaves a cell into two daughters at the end of mitosis, and must be spatially coordinated with chromosome segregation to prevent aneuploidy. The dogma is that the mitotic spindle governs the assembly and constriction of an actomyosin ring. Here, we reveal a function for active Ran in spatially restricting the ring. Our model is that during anaphase, "free" importins, whose gradient inversely correlates with active Ran and chromatin position, function as a molecular ruler for the recruitment and localization of anillin, a contractile protein and a crucial regulator of cytokinesis. We found that decreasing Ran-GTP levels or tethering active Ran to the equatorial membrane affects anillin's localization and causes cytokinesis phenotypes. Anillin contains a conserved nuclear localization signal (NLS) at its C-terminus that binds to importin-β and is required for cortical polarity and cytokinesis. Mutating the NLS decreases anillin's cortical affinity, causing it to be more dominantly regulated by microtubules. Anillin contains a RhoA-GTP binding domain, which autoinhibits the NLS and the neighboring microtubule-binding domain, and RhoA-GTP binding may relieve this inhibition during mitosis. Retention of the C-terminal NLS in anillin homologues suggests that this is a conserved mechanism for controlling anillin function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。