Differences in Cytokine Expression at Baseline and in Response to Mineral Stimulation by Peripheral Blood Mononuclear Cells from Podoconiosis Cases and Healthy Control Individuals

象皮病患者和健康对照者外周血单核细胞在基线和矿物质刺激下的细胞因子表达差异

阅读:21
作者:Mikias Negash, Tigist Girma, Menberework Chanyalew, Dawit H Alemayehu, Diana Alcantara, Gail Davey, Rosemary J Boyton, Daniel M Altmann, Melanie J Newport, Rawleigh Howe

Abstract

Epidemiological, histological, and immunogenetic studies suggest that podoconiosis (a non-infectious tropical lymphoedema affecting approximately 4 million people globally) is an HLA class II-associated inflammatory condition that develops in response to an unknown trigger found in volcanic red clay soils. Silicate particles of the kaolinite and aluminum types have been identified in femoral lymph node biopsy samples from endemic area residents, suggesting a possible role in the pathogenesis of podoconiosis. We measured in vitro peripheral blood mononuclear cell cytokine responses (TNF-α, IL-1β, and IFN-γ) to stimulation with the minerals kaolinite, chlorite, and beryllium sulfate (all at 100 µM) using ELISA. Real time PCR was used to measure gene expression of signature cytokines in fresh whole blood, comparing podoconiosis patients and endemic healthy controls. Our results showed that the levels of TNF-α and IL-1β from in vitro cell cultures were significantly higher in unstimulated samples from patients compared to controls (p = 0.04 and p = 0.005, respectively). The minerals kaolinite and chlorite induced two and three-fold higher levels of IL-1β following 24 h of stimulation in healthy controls compared to patients, respectively. We did not find significant differences in mRNA expression of the cytokine genes assayed, though a slight fold increment in IL-1β and TGF-β was observed. In conclusion, our data suggest that the immune system is in a state of persistent activation in vivo in podoconiosis patients, and additional studies of immune regulation and exhaustion are needed to further characterize immune dysfunction in the pathogenesis of the disease. A better understanding of the underlying processes could lead to the development of a 'biosignature' detectable in the early reversible stages that could ultimately contribute to the elimination of this preventable, disabling, neglected tropical disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。