Conclusions
These results indicate that E2 in the mPOA facilitates the behavioral response and neural activation that follows cocaine administration. Furthermore, they confirm the close relationship between the mPOA and cocaine response.
Methods
Female rats received ovariectomies and bilateral cannulations of the mPOA. They then received either artificial cerebrospinal fluid (aCSF) or E2 microinjections into the mPOA the day before receiving systemic injections of saline or cocaine (5 or 10 mg/kg). Conditioned-place preference (CPP) to cocaine and locomotor activation were then obtained.
Results
Animals receiving 10 mg/kg, but not 5 mg/kg, cocaine developed significant CPP, and those receiving E2 into the mPOA expressed greater CPP than those receiving microinjections of only aCSF at both doses (p < 0.05, d > 0.80). Cocaine also caused significant psychomotor activation, but this was not dependent on microinjection of E2 in the mPOA. Finally, animals that received cocaine had increased NAc core and shell c-Fos relative to animals that received saline, with animals receiving both E2 microinjections and systemic cocaine expressing the highest activation in the caudal NAc, compared to rats receiving aCSF microinjections and systemic cocaine (p = 0.05, d = 0.70). Conclusions: These results indicate that E2 in the mPOA facilitates the behavioral response and neural activation that follows cocaine administration. Furthermore, they confirm the close relationship between the mPOA and cocaine response.
