A new way of monitoring mechanical ventilation by measurement of particle flow from the airways using Pexa method in vivo and during ex vivo lung perfusion in DCD lung transplantation

在 DCD 肺移植中,使用 Pexa 方法测量体内和体外肺灌注期间气道颗粒流量,从而监测机械通气的新方法

阅读:6
作者:Ellen Broberg, Martiné Wlosinska, Lars Algotsson, Anna-Carin Olin, Darcy Wagner, Leif Pierre, Sandra Lindstedt

Background

Different mechanical ventilation settings are known to affect lung preservation for lung transplantation. Measurement of particle flow in exhaled air may allow online assessment of the impact of ventilation before changes in the tissue can be observed. We hypothesized that by analyzing the particle flow, we could understand the impact of different ventilation parameters.

Conclusions

Here, we introduce a new method for measuring particle flow during mechanical ventilation and confirm that these particles can be collected and analyzed. VCV resulted in a lower particle flow in vivo but not in EVLP. In all settings, large tidal volumes resulted in increased particle flow. We found that DPPC was significantly increased comparing in vivo with EVLP. This technology may be useful for developing strategies to preserve the lung and has a high potential to detect biomarkers.

Methods

Particle flow was monitored in vivo, post mortem, and in ex vivo lung perfusion (EVLP) in six porcines with the Pexa (particles in exhaled air) instrument. Volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) were used to compare small versus large tidal volumes. The surfactant lipids dipalmitoylphosphatidylcholine (DPPC) and phosphatidylcholine (PC) were quantified by mass spectrometry.

Results

In vivo the particle mass in VCV1 was significantly lower than in VCV2 (p = 0.0186), and the particle mass was significantly higher in PCV1 than in VCV1 (p = 0.0322). In EVLP, the particle mass in VCV1 was significantly higher than in PCV1 (p = 0.0371), and the particle mass was significantly higher in PCV2 than in PCV1 (p = 0.0127). DPPC was significantly higher in EVLP than in vivo. Conclusions: Here, we introduce a new method for measuring particle flow during mechanical ventilation and confirm that these particles can be collected and analyzed. VCV resulted in a lower particle flow in vivo but not in EVLP. In all settings, large tidal volumes resulted in increased particle flow. We found that DPPC was significantly increased comparing in vivo with EVLP. This technology may be useful for developing strategies to preserve the lung and has a high potential to detect biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。