Mechanistic Rationale for Ketene Formation during Dabbing and Vaping

涂抹和吸电子烟过程中乙烯酮形成的机理

阅读:10
作者:Kaelas R Munger, Killian M Anreise, Robert P Jensen, David H Peyton, Robert M Strongin

Abstract

Ketene is one of the most toxic vaping emissions identified to date. However, its high reactivity renders it relatively challenging to identify. In addition, certain theoretical studies have shown that realistic vaping temperature settings may betoo low to produce ketene. Each of these issues is addressed herein. First, an isotopically labeled acetate precursor is used for the identification of ketene with enhanced rigor in vaped aerosols. Second, discrepancies between theoretical and experimental findings are explained by accounting for the effects of aerobic (experimental) versus anaerobic (simulated and theoretical) pyrolysis conditions. This finding is also relevant to explaining the relatively low-temperature production of aerosol toxicants beyond ketene. Moreover, the study presented herein shows that ketene formation during vaping is not limited to molecules possessing a phenyl acetate substructure. This means that ketene emission during vaping, including from popular flavorants such as ethyl acetate, may be more prevalent than is currently known.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。