Validation of a functional human AD model with four AD therapeutics utilizing patterned ipsc-derived cortical neurons integrated with microelectrode arrays

利用与微电极阵列集成的模式化 ipsc 衍生皮质神经元,验证具有四种 AD 疗法的功能性人类 AD 模型

阅读:6
作者:Julbert Caneus #, Kaveena Autar #, Nesar Akanda, Marcella Grillo, Christopher J Long, Max Jackson, Sarah Lindquist, Xiufang Guo, Dave Morgan, James J Hickman

Abstract

Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. Long-term potentiation (LTP), which is a correlate of learning and memory, was induced in mature human iPSC-derived cortical neurons cultured on microelectrode arrays utilizing circuit patterns connecting two adjacent electrodes. We demonstrated an LTP system that modeled the MCI and pre-MCI stages of Alzheimer's and validated this functional system utilizing four AD therapeutics, which was also verified utilizing patch-clamp electrophysiology. LTP was induced by tetanic electrical stimulation, and LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aβ42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aβ42-induced LTP impairment. The results illustrate the utility of the system as a validated platform to model MCI AD pathology, and potentially for the pre-MCI phase before significant neuronal death. This system also has the potential to become an ideal platform for high-content therapeutic screening for other neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。