Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics

阳离子和 pH 依赖性的氢气析出和氧化反应动力学

阅读:5
作者:Botao Huang, Reshma R Rao, Sifan You, Kyaw Hpone Myint, Yizhi Song, Yanming Wang, Wendu Ding, Livia Giordano, Yirui Zhang, Tao Wang, Sokseiha Muy, Yu Katayama, Jeffrey C Grossman, Adam P Willard, Kang Xu, Ying Jiang, Yang Shao-Horn

Abstract

The production of molecular hydrogen by catalyzing water splitting is central to achieving the decarbonization of sustainable fuels and chemical transformations. In this work, a series of structure-making/breaking cations in the electrolyte were investigated as spectator cations in hydrogen evolution and oxidation reactions (HER/HOR) in the pH range of 1 to 14, whose kinetics was found to be altered by up to 2 orders of magnitude by these cations. The exchange current density of HER/HOR was shown to increase with greater structure-making tendency of cations in the order of Cs+ < Rb+ < K+ < Na+ < Li+, which was accompanied by decreasing reorganization energy from the Marcus-Hush-Chidsey formalism and increasing reaction entropy. Invoking the Born model of reorganization energy and reaction entropy, the static dielectric constant of the electrolyte at the electrified interface was found to be significantly lower than that of bulk, decreasing with the structure-making tendency of cations at the negatively charged Pt surface. The physical origin of cation-dependent HER/HOR kinetics can be rationalized by an increase in concentration of cations on the negatively charged Pt surface, altering the interfacial water structure and the H-bonding network, which is supported by classical molecular dynamics simulation and surface-enhanced infrared absorption spectroscopy. This work highlights immense opportunities to control the reaction rates by tuning interfacial structures of cation and solvents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。