DNA ligase IV is a potential molecular target in ACNU sensitivity

DNA 连接酶 IV 是 ACNU 敏感性的潜在分子靶点

阅读:4
作者:Natsuko Kondo, Akihisa Takahashi, Eiichiro Mori, Taichi Noda, Xiaoming Su, Ken Ohnishi, Peter J McKinnon, Toshisuke Sakaki, Hiroyuki Nakase, Koji Ono, Takeo Ohnishi

Abstract

Nimustine (ACNU) is a chloroethylating agent which was the most active chemotherapy agent used for patients with high-grade gliomas until the introduction of temozolomide, which became the standard of care for patients with newly diagnosed glioblastomas in Japan. Since temozolomide was established as the standard first-line therapy for glioblastoma multiforme (GBM), ACNU has been employed as a salvage chemotherapy agent for recurrent GBM in combination with other drugs. The acting molecular mechanism in ACNU has yet to be elucidated. ACNU is a cross-linking agent which induces DNA double-strand breaks (DSBs). The work described here was intended to clarify details in repair pathways which are active in the repair of DNA DSBs induced by ACNU. DSBs are repaired through the homologous recombination (HR) and non-homologous end-joining (NHEJ) pathways. Cultured mouse embryonic fibroblasts were used which have deficiencies in DNA DSB repair genes which are involved in HR repair (X-ray repair cross-complementing group 2 [XRCC2] and radiation sensitive mutant 54 [Rad54]), and in NHEJ repair (DNA ligase IV [Lig4]). Cellular sensitivity to ACNU treatment was evaluated with colony forming assays. The most effective molecular target which correlated with ACNU cell sensitivity was Lig4. In addition, it was found that Lig4 small-interference RNA (siRNA) efficiently enhanced cell lethality which was induced by ACNU in human glioblastoma A172 cells. These findings suggest that the down-regulation of Lig4 might provide a useful tool which can be used to increase cell sensitivity in response to ACNU chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。