Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes

通过 RanBP9 和 Hsp90/Hsc70 分子伴侣复合物增强 tau 病理

阅读:9
作者:Jung A Woo, Tian Liu, Xingyu Zhao, Courtney Trotter, Ksenia Yrigoin, Sara Cazzaro, Emilio De Narvaez, Hirah Khan, Richard Witas, Anusha Bukhari, Kamal Makati, Xinming Wang, Chad Dickey, David E Kang

Abstract

Accumulation of amyloid β (Aβ) and tau represent the two major pathological hallmarks of Alzheimer's disease (AD). Despite the critical importance of Aβ accumulation as an early event in AD pathogenesis, multiple lines of evidence indicate that tau is required to mediate Aβ-induced neurotoxic signals in neurons. We have previously shown that the scaffolding protein Ran-binding protein 9 (RanBP9), which is highly elevated in brains of AD and AD mouse models, both enhances Aβ production and mediates Aβ-induced neurotoxicity. However, it is unknown whether and how RanBP9 transmits Aβ-induced neurotoxic signals to tau. Here we show for the first time that overexpression or knockdown of RanBP9 directly enhances and reduces tau levels, respectively, in vitro and in vivo. Such changes in tau levels are associated with the ability of RanBP9 to physically interact with tau and heat shock protein 90/heat shock cognate 70 (Hsp90/Hsc70) complexes. Meanwhile, both RanBP9 and tau levels are simultaneously reduced by Hsp90 or Hsc70 inhibitors, whereas overexpression or knockdown of RanBP9 significantly diminishes the anti-tau potency of Hsp90/Hsc70 inhibitors as well as Hsc70 variants (WT & E175S). Further, RanBP9 increases the capacity for Hsp90 and Hsc70 complexes to bind ATP and enhances their ATPase activities in vitro. These observations in vitro and cell lines are recapitulated in primary neurons and in vivo, as genetic reduction in RanBP9 not only ameliorates tauopathy in Tau-P301S mice but also rescues the deficits in synaptic integrity and plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。