Serum Amyloid A Contributes to Chronic Apical Periodontitis via TLR2 and TLR4

血清淀粉样蛋白 A 通过 TLR2 和 TLR4 导致慢性根尖周炎

阅读:5
作者:K Hirai, H Furusho, N Kawashima, S Xu, M C de Beer, R Battaglino, T Van Dyke, P Stashenko, H Sasaki

Abstract

In the current concept of bacterial infections, pathogen-associated molecular patterns (PAMPs) derived from pathogens and damage-associated molecular patterns (DAMPs) released from damaged/necrotic host cells are crucial factors in induction of innate immune responses. However, the implication of DAMPs in apical and marginal periodontitis is unknown. Serum amyloid A (SAA) is a DAMP that is involved in the development of various chronic inflammatory diseases, such as rheumatoid arthritis. In the present study, we tested whether SAA is involved in the pathogenesis of periapical lesions, using human periapical surgical specimens and mice deficient in SAA and Toll-like receptors (TLR). SAA1/2 was locally expressed in human periapical lesions at the mRNA and protein levels. The level of SAA protein appeared to be positively associated with the inflammatory status of the lesions. In the development of mouse periapical inflammation, SAA1.1/2.1 was elevated locally and systemically in wild-type (WT) mice. Although SAA1.1/2.1 double-knockout and SAA3 knockout mice had redundant attenuation of the extent of periapical lesions, these animals showed strikingly improved inflammatory cell infiltration versus WT. Recombinant human SAA1 (rhSAA1) directly induced chemotaxis of WT neutrophils in a dose-dependent manner in vitro. In addition, rhSAA1 stimulation significantly prolonged the survival of WT neutrophils as compared with nonstimulated neutrophils. Furthermore, rhSAA1 activated the NF-κB pathway and subsequent IL-1α production in macrophages in a dose-dependent manner. However, TLR2/TLR4 double deficiency substantially diminished these SAA-mediated proinflammatory responses. Taken together, the SAA-TLR axis plays an important role in the chronicity of periapical inflammation via induction of inflammatory cell infiltration and prolonged cell survival. The interactions of PAMPs and DAMPs require further investigation in dental/oral inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。