Dysregulation of alternative splicing in spinocerebellar ataxia type 1

型脊髓小脑性共济失调的选择性剪接失调

阅读:5
作者:Victor Olmos, Evrett N Thompson, Neha Gogia, Kimberly Luttik, Vaishnavi Veeranki, Luhan Ni, Serena Sim, Kelly Chen, Diane S Krause, Janghoo Lim0

Abstract

Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。