Abstract
The uranyl cation (UO(2) (2+)) can be suspected to interfere with the binding of essential metal cations to proteins, underlying some mechanisms of toxicity. A dedicated computational screen was used to identify UO(2) (2+) binding sites within a set of nonredundant protein structures. The list of potential targets was compared to data from a small molecules interaction database to pinpoint specific examples where UO(2) (2+) should be able to bind in the vicinity of an essential cation, and would be likely to affect the function of the corresponding protein. The C-reactive protein appeared as an interesting hit since its structure involves critical calcium ions in the binding of phosphorylcholine. Biochemical experiments confirmed the predicted binding site for UO(2) (2+) and it was demonstrated by surface plasmon resonance assays that UO(2) (2+) binding to CRP prevents the calcium-mediated binding of phosphorylcholine. Strikingly, the apparent affinity of UO(2) (2+) for native CRP was almost 100-fold higher than that of Ca(2+). This result exemplifies in the case of CRP the capability of our computational tool to predict effective binding sites for UO(2) (2+) in proteins and is a first evidence of calcium substitution by the uranyl cation in a native protein.
