Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer's disease: possible mechanisms of IDE in T2D and AD

胰岛素降解酶在 2 型糖尿病和阿尔茨海默病混合模型中导致病理改变:IDE 在 2 型糖尿病和阿尔茨海默病中的可能机制

阅读:5
作者:Huajie Li, Jian Wu, Linfeng Zhu, Luolin Sha, Song Yang, Jiang Wei, Lei Ji, Xiaochun Tang, Keshi Mao, Liping Cao, Ning Wei, Wei Xie, Zhilong Yang

Abstract

Insulin degrading enzyme (IDE) is believed to act as a junction point of Type 2 diabetes (T2D) and Alzheimer's disease (AD); however, the underlying mechanism was not completely clear yet. Transgenic APPSwe/PS1 mice were used as the AD model and were treated with streptozocin/streptozotocin (STZ) to develop a mixed mice model presenting both AD and T2D. Morris Water Maze (MWM) and recognition task were performed to trace the cognitive function. The detection of fasting plasma glucose (FPG) and plasma insulin concentration, and oral glucose tolerance test (OGTT) were used to trace the metabolism evolution. Aβ40 and Aβ42 were quantified by colorimetric ELISA kits. The mRNA or protein expression levels were determined by quantitative real-time RT-PCR and Western blotting analysis respectively. T2D contributes to the AD progress by accelerating and worsening spatial learning and recognition impairments. Metabolic parameters and glucose tolerance were significantly changed in the presence of the AD and T2D. The expression levels of IDE, PPARγ, and AMPK were down-regulated in mice with AD and T2D. PPARγ activator rosiglitazone (RSZ) or AMPK activator AICAR increased the expression level of IDE and decreased Aβ levels in mice with AD and T2D. RSZ or AICAR treatment also alleviated the spatial learning and recognition impairments in AD and T2D mice. Our results found that, in the mice with T2D and AD, the activators of PPARγ/AMPK signaling pathway significantly increased the expression level of IDE, and decreased the accumulation of Aβ40 and Aβ42, as well as alleviated the spatial learning and recognition impairments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。