Deep cell phenotyping and spatial analysis of multiplexed imaging with TRACERx-PHLEX

使用 TRACERx-PHLEX 进行深度细胞表型分析和多重成像的空间分析

阅读:4
作者:Alastair Magness #, Emma Colliver #, Katey S S Enfield #, Claudia Lee, Masako Shimato, Emer Daly, David A Moore, Monica Sivakumar, Karishma Valand, Dina Levi, Crispin T Hiley, Philip S Hobson, Febe van Maldegem, James L Reading, Sergio A Quezada, Julian Downward, Erik Sahai, Charles Swanton, Mihaela

Abstract

The growing scale and dimensionality of multiplexed imaging require reproducible and comprehensive yet user-friendly computational pipelines. TRACERx-PHLEX performs deep learning-based cell segmentation (deep-imcyto), automated cell-type annotation (TYPEx) and interpretable spatial analysis (Spatial-PHLEX) as three independent but interoperable modules. PHLEX generates single-cell identities, cell densities within tissue compartments, marker positivity calls and spatial metrics such as cellular barrier scores, along with summary graphs and spatial visualisations. PHLEX was developed using imaging mass cytometry (IMC) in the TRACERx study, validated using published Co-detection by indexing (CODEX), IMC and orthogonal data and benchmarked against state-of-the-art approaches. We evaluated its use on different tissue types, tissue fixation conditions, image sizes and antibody panels. As PHLEX is an automated and containerised Nextflow pipeline, manual assessment, programming skills or pathology expertise are not essential. PHLEX offers an end-to-end solution in a growing field of highly multiplexed data and provides clinically relevant insights.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。