Augmenting Peripheral Nerve Regeneration Using Hair Follicle Stem Cells in Rats

利用大鼠毛囊干细胞促进周围神经再生

阅读:4
作者:Leila Beigom Hejazian, Zeinab Akbarnejad, Fatemeh Moghani Ghoroghi, Banafshe Esmaeilzade, Samira Chaibakhsh

Conclusion

The achieved results propose that hair follicle stem cells improve axonal growth and functional recovery after peripheral nerve injury. Highlights: This study showed that rat hair follicle stem cells are suitable for cell culture, proliferation and differentiationThe results suggested that transplantation of rat hair follicle stem cells had the potential capability of regenerating sciatic nerve injuryEvidence of electrophysiology and histology showed Concomitant use of epineurium with hair follicle stem cell was more effective repairment. Plain language summary: Although repairing damaged peripheral nerves has always been a medical challenge, but peripheral nerve injury has been successfully repaired using various procedures such as nerve auto-graft or stem cell therapy. The functional reconstruction is the most important after therapy because of that primary nerve repair or use of nerve autograft, are still accepted as golden standard methods for treatment. Considerable recent interest has been focused on adult stem cells for both research and clinical applications. A highly promising source of relatively abundant and accessible, active, multipotent adult stem cells are obtained from hair follicles. In research the hair follicle stem cells implanted into the gap region of a severed sciatic nerve injury greatly enhanced the rate of nerve regeneration and the restoration of nerve function. Time is one of the several aspects require specific attention in the clinical treatment of peripheral nerve injury. Because delay of nerve injury treatment may cause neurobiological alterations in neurons and Schwann cells, impairing nerve functional recovery and affect neuron survival. In this study, concluded that stem cell injection 2 weeks after injury in the damaged nerve epineurium repairs nerve fibers, while electrophysiology of the leg muscles showed that muscle function was significantly improved. It indicates the repair of muscular innervation and nerve repair. The results pave the way for further research on this topic.

Methods

The bulge region of the rat whisker were isolated and cultured. Morphological and biological features of the cultured bulge cells were observed by light microscopy and immunocytochemistry methods. Percentages of CD34, K15, and nestin cell markers expression were demonstrated by flow cytometry. Rats were randomly divided into 3 groups of injury, epineurium, and epineurium with cells in which rat Hair Follicular Stem Cells (rHFSCs) were injected into the site of the nerve cut. HFSCs were labeled with Bromodeoxyuridine (BrdU), and double-labeling immunofluorescence was performed to study the survival and differentiation of the grafted cells. After 8 weeks, electrophysiological, histological, and immunocytochemical analysis assessments were performed.

Results

Rat hair follicle stem cells are suitable for cell culture, proliferation, and differentiation. The results suggest that transplantation of rat hair follicle stem cells can regenerate sciatic nerve injury; moreover, electrophysiology and histology examinations show that sciatic nerve repair was more effective in the epineurium with cell group than in the other experimental group (P<0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。