HIV-2 Protease resistance defined in yeast cells

酵母细胞中确定的 HIV-2 蛋白酶抗性

阅读:12
作者:Najoua Ben M'Barek, Gilles Audoly, Didier Raoult, Pablo Gluschankof

Background

Inhibitors of the HIV-1 Protease currently used in therapeutic protocols, have been found to inhibit, although at higher concentrations, the HIV-2 encoded enzyme homologue. Similar to observations in HIV-1 infected individuals, therapeutic failure has also been observed for some patients infected with HIV-2 as a consequence of the emergence of viral strains resistant to the anti-retroviral molecules. In order to be able to define the specific mutations in the Protease that confer loss of susceptibility to Protease Inhibitors, we set up an experimental model system based in the expression of the viral protein in yeast.

Conclusion

This functional assay allowed us to show for the first time that the L90M substitution, present in a primary HIV-2 isolate, modifies the HIV-2 Protease susceptibility to Saquinavir but not Lopinavir. Developing a strategy based on the proposed yeast expressing system will contribute to define amino acid substitutions conferring HIV-2 Protease resistance.

Results

Our results show that the HIV-2 Protease activity kills the yeast cell, and this process can be abolished by inhibiting the viral enzyme activity. Since this inhibition is dose dependent, IC50 values can be assessed for each anti-retroviral molecule tested. We then defined the susceptibility of HIV-2 Proteases to Protease Inhibitors by comparing the IC50 values of Proteases from 7 infected individuals to those of a sensitive wild type laboratory adapted strain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。