Bacterial ammeline metabolism via guanine deaminase

细菌通过鸟嘌呤脱氨酶代谢氨酰胺

阅读:6
作者:Jennifer L Seffernick, Anthony G Dodge, Michael J Sadowsky, John A Bumpus, Lawrence P Wackett

Abstract

Melamine toxicity in mammals has been attributed to the blockage of kidney tubules by insoluble complexes of melamine with cyanuric acid or uric acid. Bacteria metabolize melamine via three consecutive deamination reactions to generate cyanuric acid. The second deamination reaction, in which ammeline is the substrate, is common to many bacteria, but the genes and enzymes responsible have not been previously identified. Here, we combined bioinformatics and experimental data to identify guanine deaminase as the enzyme responsible for this biotransformation. The ammeline degradation phenotype was demonstrated in wild-type Escherichia coli and Pseudomonas strains, including E. coli K12 and Pseudomonas putida KT2440. Bioinformatics analysis of these and other genomes led to the hypothesis that the ammeline deaminating enzyme was guanine deaminase. An E. coli guanine deaminase deletion mutant was deficient in ammeline deaminase activity, supporting the role of guanine deaminase in this reaction. Two guanine deaminases from disparate sources (Bradyrhizobium japonicum USDA 110 and Homo sapiens) that had available X-ray structures were purified to homogeneity and shown to catalyze ammeline deamination at rates sufficient to support bacterial growth on ammeline as a sole nitrogen source. In silico models of guanine deaminase active sites showed that ammeline could bind to guanine deaminase in a similar orientation to guanine, with a favorable docking score. Other members of the amidohydrolase superfamily that are not guanine deaminases were assayed in vitro, and none had substantial ammeline deaminase activity. The present study indicated that widespread guanine deaminases have a promiscuous activity allowing them to catalyze a key reaction in the bacterial transformation of melamine to cyanuric acid and potentially contribute to the toxicity of melamine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。