Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels

缺乏 P/Q 型 Ca2+ 通道的小鼠终板量子神经递质释放特性改变

阅读:9
作者:Francisco J Urbano, Erika S Piedras-Rentería, Kisun Jun, Hee-Sup Shin, Osvaldo D Uchitel, Richard W Tsien

Abstract

Transmission at the mouse neuromuscular junction normally relies on P/Q-type channels, but became jointly dependent on both N- and R-type Ca(2+) channels when the PQ-type channel alpha(1A) subunit was deleted. R-type channels lay close to Ca(2+) sensors for exocytosis and I(K(Ca)) channel activation, like the P/Q-type channels they replaced. In contrast, N-type channels were less well localized, but abundant enough to influence secretion strongly, particularly when action potentials were prolonged. Our data suggested that active zone structures may select among multiple Ca(2+) channels in the hierarchy P/Q >R >N. The alpha(1A)-/- neuromuscular junction displayed several other differences from wild-type: lowered quantal content but greater ability to withstand reductions in the Ca(2+)/Mg(2+) ratio, and little or no paired-pulse facilitation, the latter findings possibly reflecting compensatory mechanisms at individual release sites. Changes in presynaptic function were also associated with a significant reduction in the size of postsynaptic acetylcholine receptor clusters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。