Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis

赖氨酸乙酰基分析揭示拟南芥中新的组蛋白去乙酰化酶底物蛋白

阅读:4
作者:Markus Hartl, Magdalena Füßl, Paul J Boersema, Jan-Oliver Jost, Katharina Kramer, Ahmet Bakirbas, Julia Sindlinger, Magdalena Plöchinger, Dario Leister, Glen Uhrig, Greg Bg Moorhead, Jürgen Cox, Michael E Salvucci, Dirk Schwarzer, Matthias Mann, Iris Finkemeier

Abstract

Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome-wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis Relative quantification of the changes in the lysine acetylation levels was determined on a proteome-wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1-like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar-localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss-of-function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low-light conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。