Crosstalk between GBP2 and M2 macrophage promotes the ccRCC progression

GBP2 和 M2 巨噬细胞之间的串扰促进 ccRCC 进展

阅读:6
作者:Wei Zheng, Shujiang Ye, Bin Liu, Dan Liu, Ruyu Yan, Hongjuan Guo, Hongtao Yu, Xudong Hu, Huaiming Zhao, Kecheng Zhou, Guangyuan Li

Abstract

Clear cell renal cell carcinoma (ccRCC) represents a highly heterogeneous kidney malignancy associated with the poorest prognosis. The metastatic potential of advanced ccRCC tumors is notably high, posing significant clinical challenges. There is an urgent imperative to develop novel therapeutic approaches to address ccRCC metastasis. Recent investigations indicated a potential association between GBP2 and tumor immunity. However, the precise functional role of GBP2 in the progression of ccRCC remains poorly understood. The present study revealed a strong correlation between GBP2 and M2 macrophages. Specifically, our findings demonstrated that the inhibition of GBP2 significantly impedes the migratory and invasive capabilities of ccRCC cells. We observed that the presence of M2 macrophages can reverse the effects of GBP2 knockdown on tumor cell migration and invasion. Mechanistically, we demonstrated that M2 macrophages promote the expression of the GBP2/p-STAT3 and p-ERK axis in tumor cells through the secretion of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), thereby substantially enhancing the migratory and invasive capacities of the tumor cells. Simultaneously, we have identified that GBP2 promotes the polarization of macrophages to the M2 phenotype by stimulating the secretion of interleukin-18 (IL-18). In summary, our investigation anticipates that the GBP2/IL-18/M2 macrophages/IL-10 and the TGF-β/GBP2, p-STAT3, p-ERK loop plays a crucial role in ccRCC metastasis. The collective findings from our research underscore the significant role of GBP2 in tumor immunity and emphasize the potential for modulating GBP2 as a promising therapeutic strategy for targeting ccRCC metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。