Advanced chelate technology-based trace minerals reduce inflammation and oxidative stress in Eimeria-infected broilers by modulating NF-kB and Nrf2 pathways

基于先进螯合技术的微量矿物质通过调节 NF-kB 和 Nrf2 通路减少艾美耳球虫感染肉鸡的炎症和氧化应激

阅读:5
作者:Nasim Biabani, Kamran Taherpour #, Hossein Ali Ghasemi #, Mohammad Akbari Gharaei, Maryam Hafizi, Mohammad Hassan Nazaran

Abstract

This study investigated the effects of substituting inorganic trace minerals (ITM) with advanced chelate technology-based TM (ACTM) in broiler chicken feed on productive performance, metabolic profile, humoral immunity, antioxidant status, and modulation of NF-kB and Nrf2 signaling pathways in mixed Eimeria species exposure. The study involved 480 newly hatched male broiler chickens, which were divided into 5 treatment groups, each with 6 replicate cages and 16 chickens per replicate. The experimental treatments included an uninfected negative control group fed a basal diet with recommended inorganic TM levels (NC), an infected positive control group fed the same diet (PC), a PC group supplemented with salinomycin (SAL), and two PC groups in which the basal diet was replaced with 50% and 100% ACTM instead of inorganic TM (ACTM50 and ACTM100, respectively). All groups, except for the NC group, were orally challenged with mixed Eimeria species oocysts on day 14. According to the results, the PC group showed lower feed intake, breast yield, low-density lipoprotein-cholesterol concentration, lactobacillus spp. counts, and serum IgG levels, but higher jejunal TGF-β expression versus the NC group. The broilers in the NC, SAL, and ACTM100 groups showed higher body weight gain, carcass yield, and TGF-β expression, but lower serum alkaline phosphatase activity, ileal E. coli count, and jejunal expression levels of IL-1β, IL-6, IFN-γ, Nrf2, and SOD1 compared to the PC group, with the NC group having the highest body weight gain and lowest IL-1β and Nrf2 expression levels. Furthermore, the administration of ACTM100 treatment improved feed efficiency, increased serum iron, zinc, manganese, and copper levels, enhanced total antioxidant capacity and different antioxidant enzyme activities, and reduced malondialdehyde concentration. In conclusion, complete replacement of ITM with ACTM effectively protects broilers from Eimeria infection, with similar positive effects to SAL treatment in terms of productive performance and anti-inflammatory responses and better antioxidant responses and mineral availability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。